miércoles, 1 de octubre de 2008

Probabilidad

Probabilidad

El concepto de probabilidad nace con el deseo del hombre de conocer con certeza los eventos futuros. Es por ello que el estudio de probabilidades surge como una herramienta utilizada por los nobles para ganar en los juegos y pasatiempos de la época. El desarrollo de estas herramientas fue asignado a los matemáticos de la corte.

A través de la historia se han desarrollado tres enfoques conceptuales diferentes para definir la probabilidad y determinar los valores de probabilidad:

El enfoque clásico

Dice que si hay x posibles resultados favorables a la ocurrencia de un evento A y z posibles resultados desfavorables a la ocurrencia de A, y todos los resultados son igualmente posibles y mutuamente excluyente (no pueden ocurrir los dos al mismo tiempo), entonces la probabilidad de que ocurra A es:

P(A)= x/(x-z)

El enfoque clásico de la probabilidad se basa en la suposición de que cada resultado sea igualmente posible.

El enfoque de frecuencia relativa

También llamado Enfoque Empírico, determina la probabilidad sobre la base de la proporción de veces que ocurre un evento favorable en un numero de observaciones. En este enfoque no ese utiliza la suposición previa de aleatoriedad. Porque la determinación de los valores de probabilidad se basa en la observación y recopilación de datos.

El enfoque subjetivo

Dice que la probabilidad de ocurrencia de un evento es el grado de creencia por parte de un individuo de que un evento ocurra, basado en toda la evidencia a su disposición. Bajo esta premisa se puede decir que este enfoque es adecuado cuando solo hay una oportunidad de ocurrencia del evento. Es decir, que el evento ocurrirá o no ocurrirá esa sola vez. El valor de probabilidad bajo este enfoque es un juicio personal.

 

Ejemplo!!!

Se ha observado que 9 de cada 50 vehículos que pasan por una esquina no tienen cinturón de seguridad. Si un vigilante de transito se para en esa misma esquina un ida cualquiera ¿Cuál será la probabilidad de que detenga un vehículo sin cinturón de seguridad?

P(A)=9/50= 0.18 o 18%

 

Básicamente el concepto mas claro de probabilidad puede ser que es un como cálculo de probabilidad al conjunto de reglas que permiten determinar si un fenómeno ha de producirse, fundando la suposición en el cálculo, las estadísticas o la teoría.

 

Reglas de la Adición

La Regla de la Adición expresa que: la probabilidad de ocurrencia de al menos dos sucesos A y B es igual a:

P(A o B) = P(A) U P(B) = P(A) + P(B) si A y B son mutuamente excluyente

P(A o B) = P(A) + P(B) – P(A y B) si A y B son no excluyentes

Eventos Independientes

Dos o más eventos son independientes cuando la ocurrencia o no-ocurrencia de un evento no tiene efecto sobre la probabilidad de ocurrencia del otro evento (o eventos). Un caso típico de eventos independiente es el muestreo con reposición, es decir, una vez tomada la muestra se regresa de nuevo a la población donde se obtuvo.

 

 

Eventos dependientes

Dos o más eventos serán dependientes cuando la ocurrencia o no-ocurrencia de uno de ellos afecta la probabilidad de ocurrencia del otro (o otros). Cuando tenemos este caso, empleamos entonces, el concepto de probabilidad condicional para denominar la probabilidad del evento relacionado. La expresión P(A|B) indica la probabilidad de ocurrencia del evento A sí el evento B ya ocurrió.

Se debe tener claro que A|B no es una fracción.

P(A|B) = P(A y B)/P(B) o P(B|A) = P(A y B)/P(A)

 

lunes, 26 de mayo de 2008

Area bajo la curva

Area bajo la curva

Es una aplicacion matematica de mucho utilidad que consiste en calcular el qrea delimitada entre dos ejes, la linea base contiene el 100% de la distribuicion, esta tiene forma de campana.

viernes, 14 de marzo de 2008

Diagrama de Shevyshev

Diagrama de Chebyshev es un resultado estadístico que ofrece una cota inferior a la probabilidad de que el valor de una variable aleatoria con varianza finita esté a una cierta distancia de su esperanza matemática o de su media; equivalentemente, el teorema proporciona una cota superior a la probabilidad de que los valores caigan fuera de esa distancia respecto de la media. El teorema es aplicable incluso en distribuciones que no tienen forma de "curva de campana" y acota la cantidad de datos que están o no "en medio".

Cometario:

El diagrama de chebyshev da una estimación conservadora de la probabilidad de que  una variable aleatoria  tomo un valor dentro de k desviación estándar de su media, para cualquier numero real, k.El diagrama de Chebyshev tiene validez solo cuando la distribución de la población en estudio se distribuye normalmente.Según el diagrama de Chebyshev, la población de una variable aleatoria cualquiera tome un valor dentro de k desviaciones estándar de la media, es exactamente igual a: 1-1/k2.